Adaptive fuzzy fitness granulation for evolutionary optimization
نویسندگان
چکیده
Nature may have been the original inspiration for evolutionary algorithms, but unlike artificially designed systems, nature has an abundance of resources and time. For man-made systems, computational complexity is a prohibitive factor in sufficiently large and complex problems of today. Much of this computational complexity is due to the fitness function evaluation that may either not exist or be computationally very expensive. But, an exact computation of fitness may not be really necessary as long as a proper rank is approximately preserved in the evolution’s scheme of the survival of the fittest. Here, we aim to exploit this feature of evolution and to investigate the use of fitness granulation via an adaptive fuzzy similarity analysis in order to reduce the number of fitness evaluations. In the proposed algorithm, an individual’s fitness is only computed if it has insufficient similarity to a pool of fuzzy granules whose fitness has already been computed. If an individual is sufficiently similar to a known fuzzy granule, then that granule’s fitness is used instead as a crude estimate. Otherwise, that individual is added to the pool as the core of a new fuzzy granule. Each granule’s radius of influence is adaptive and will grow/shrink depending on the population fitness. The proposed technique is applied to two sets of problems. First is a set of several numerical benchmark problems with various optimization characteristics. Second is a set of four hardware design problems that are evaluated via finite element analysis. Performance of the proposed algorithm is compared with several other competing algorithms, i.e. a fast evolutionary strategy (FES), a GA-NN, as well as a simple GA, in terms of both computational efficiency and accuracy. Statistical analysis reveals that the proposed method significantly decreases the number of fitness function evaluations while finding equally good or better solutions. Moreover, application to the hardware design problems reveals better structural designs more consistently with better computational efficiency. 2008 Elsevier Inc. All rights reserved.
منابع مشابه
A note on "Adaptive fuzzy fitness granulation for evolutionary optimization"
Article history: Received 23 August 2014 Received in revised form 25 November 2014 Accepted 25 November 2014 Available online 28 November 2014
متن کاملEvolutionary hidden information detection by granulation-based fitness approximation
Spread spectrum audio watermarking (SSW) is one of the most powerful techniques for secure audio watermarking. SSW hides information by spreading the spectrum. The hidden information is called the ‘watermark’ and is added to a host signal, making the latter a watermarked signal. The spreading of the spectrum is carried out by using a pseudo-noise (PN) sequence. In conventional SSW approaches, t...
متن کاملFuzzy Adaptive Granulation Multi-Objective Multi-microgrid Energy Management
This paper develops an energy management approach for a multi-microgrid (MMG) taking into account multiple objectives involving plug-in electric vehicle (PEV), photovoltaic (PV) power, and a distribution static compensator (DSTATCOM) to improve power provision sharing. In the proposed approach, there is a pool of fuzzy microgrids granules that they compete with each other to prolong their lives...
متن کاملReducing the Computational Cost in Multi-objective Evolutionary Algorithms by Filtering Worthless Individuals
The large number of exact fitness function evaluations makes evolutionary algorithms to have computational cost (especially in Multi Objective Problems (MOPs)). In some realworld problems, reducing number of these evaluations is much more valuable even by increasing computational complexity and spending more time. To fulfil this target, we introduce an effective factor, in spite of applied fact...
متن کاملColor Image Segmentation with CLPSO-based Fuzzy
A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 49 شماره
صفحات -
تاریخ انتشار 2008